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Dept. de F́ısica Teórica, Univ. Autónoma de Madrid, 28049 Spain

Received: 10 September 2002 / Revised version: 4 April 2003 /
Published online: 2 June 2003 – c© Springer-Verlag / Società Italiana di Fisica 2003

Abstract. To reach their physical goals, future neutrino factories using muon decay aim at an overall
flux precision of O(1%) or better. We analytically study the QED radiative corrections to the neutrino
differential distributions from muon decay. Kinematic uncertainties due to the divergence of the muon beam
are considered as well. The resulting corrections to the neutrino flux turn out to be of order O(0.1%), safely
below the required precision.

1 Introduction

Results on neutrino oscillations from Superkamiokande
[1] and SNO [2] provide compelling evidence for neutrino
masses, constituting the first strong indication of physics
beyond the standard model. Much is still unknown,
though, regarding fundamental issues such as the absolute
neutrino mass scale, the possible Majorana character of
the neutrino fields, the ordering of their mass eigenstates
with respect to charged lepton eigenstates, or the possible
existence of leptonic CP -violation and its tantalizing rela-
tionship to baryogenesis. In this situation one could argue
that the subject of lepton flavor physics is in its exciting
infancy, and to obtain rough answers to those questions
could be a sufficient goal at present, postponing any aim at
a precise determination of the involved parameters. Nev-
ertheless, some of those questions prerequire precision: for
instance the study of CP -violation rests upon a precise
knowledge of the angles in the neutrino mixing matrix.

In a more general way and much as for the quark sec-
tor, it is necessary to accurately know the values of the
masses and mixing parameters in the lepton sector, as a
first step to unravel the flavor puzzle. And what does pre-
cision mean, quantitatively? For instance, with which pre-
cision is it desirable to determine the values of the leptonic
mixing angles in order to discriminate between models for
the neutrino masses? Clearly no definite answer can be
given to such questions, but as an indication it has been
argued [4] that a 10%–1% precision in the knowledge of,
say, sin2 2θatm would result in significant advance1. It is
not impossible to envisage such a precision. To resume: we
are simultaneously entering a discovery and a precision era

a e-mail: alicia@delta.ft.uam.es
b e-mail: mena@delta.ft.uam.es
1 θatm denotes the mixing angle dominantly responsible for

the atmospheric oscillations, denoted by θ23 in the by now
standard parameterization [5]

in neutrino physics. With the bonus that the extraction
of physical conclusions will not necessarily be hindered by
large theoretical errors, as happens in the quark sector
due to QCD long distance contributions.

A quest for precise physics answers evidently requires
an effort in the precision of the experimental conditions,
and of our knowledge of the neutrino flux to start with.
Several experiments using neutrino beams from particle
accelerators such as K2K, MINOS and OPERA [3] will
take data in the next few years. Their reach will be lim-
ited by the use of conventional neutrino beams produced
from a charged pion source. The decay π+ → µ+νµ (π− →
µ−ν̄µ) produces a νµ beam with a O(1%) component of
νe from kaon decays. The νe contamination limits the pre-
cision of the flux measurements, resulting in an error of
7% for K2K, while MINOS reduces it to 2% [3]. A fur-
ther step forward could be provided by the so-called su-
perbeams which, although based on the same traditional
beams, can achieve a better precision thanks to the much
higher statistics. It has been argued, for example, that by
working at energies below the threshold of kaon produc-
tion, the νe flavor contamination could be reduced, with
the overall figure of merit for precision in the flux mea-
surements limited to O(1%) [6,7].

A major advance should come from a neutrino factory
from muon decays, aiming at both fundamental discoveries
and O(1%) precision measurements. Present projects con-
sider the production of very intense muon sources of about
1020 muons per year [8]. Neutrino beams originate from
the decay of high-momentum muons along the straight
sections of a storage ring. The beam produced presents
a precisely known neutrino content: 50% muon neutrinos
and 50% electron antineutrinos if a µ− beam is used, and
50% muon antineutrinos and 50% electron neutrinos if a
µ+ beam is used. The resulting ν fluxes are expected to
be known with a precision better than 1% [9]. It is neces-
sary to ensure that any possible corrections and sources of
errors are controlled at that level. In this work, we study
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two effects: the contribution of QED one-loop corrections
to muon decay and the divergence of the muon beam. For
both cases, we give novel corrected formulae for the neu-
trino differential distributions.

Radiative corrections to the electron differential dis-
tribution in µ− → e− + ν̄e + νµ were calculated long ago
resulting in a correction of O(1%) [10], larger than the
expected effect of O (α

π

) ∼ O(0.1%). Such an effect is at
the level of the expected precision at a neutrino factory.
In this work we study whether QED corrections affect the
neutrino distributions at the same order.

The correction to the (massive) neutrino spectra from
unpolarized muons has been calculated for the first time
in [11]. In our work, we give new anlytic formulae with
mν = 0 and me = 0 including muon polarization, rel-
evant for neutrino factory measurements. Different from
the electron case, the analysis of the correction to the neu-
trino differential distributions entails non-trivial integra-
tions. By using the correspondence between the QED cor-
rections to the µ decay and those for the charge 2/3 heavy
quarks in QCD, we make use of the techniques developed
in [12–14] for the calculation of the QCD corrections to
the lepton spectrum in the decay t → b + l+ + νl.

The second subject addressed in this paper is that of
the muon beam divergence, one of the basic properties
that can bias the predicted neutrino spectra. We explore
the error induced in the neutrino distributions at the far
site due to the systematic uncertainty on the angular di-
vergence, and compare our results with previous ones in
which this effect was not included [15].

This paper is organized as follows. In Sect. 2 we recall
the tree-level angular distributions. In Sect. 3 the neutrino
one-loop corrected formulae are given, with Sect. 3.1 spe-
cializing in the soft photon limit and cancellation of in-
frared divergences. Section 4 accounts for the corrections
due to the beam divergence.

2 General definitions

In the muon rest frame, the angular distributions of the
neutrinos produced in the decay µ− → e−+νµ+ν̄e, shown
in Fig. 1a, are computed from the muon decay rate:

dΓ0 =
1

2mµ
64 GF

2 |M0(pµ; pe, pν̄e , pνµ)|2

×dΦ3(pµ; pe, pν̄e , pνµ), (1)

where |M0(pµ, pe, pν̄e , pνµ)|2 is the averaged squared am-
plitude obtained from the Feynmann diagram at tree level.
For polarized muons

|M0(pµ; pe, pν̄e , pνµ)|2 = [(pµ − mµs) pν̄e ] (pepνµ), (2)

where s is the four-spin. For unpolarized muons s = 0.
dΦ3 is the three-body phase space. In general, the n-

body phase space is defined by

dΦn(P ; p1, ..., pn)

= (2π)4 δ(P − p1 − ... − pn)
n∏

i=1

d3pi

2p0
i

1
(2π)3

. (3)

Differential distributions of decay products are
obtained integrating over the phase space of the remaining
decay particles,

d2N

dxd cos θ
= F (0)(x) + J (0)(x) Pµ cos θ, (4)

where x denotes the scaled energy, x = 2Ee,ν/mµ and
Pµ is the average over the polarization of the initial state
muon along the beam direction. θ is the angle between
the three-momentum of the emitted particle and the muon
spin direction, and mµ is the muon mass. The normalized
functions F (0) and J (0), in the limit me = 0, read [16]

F (0)
e (x) = x2(3 − 2x), J (0)

e (x) = x2(1 − 2x), (5)

F (0)
νµ

(x) = x2(3 − 2x), J (0)
νµ

(x) = x2(1 − 2x), (6)

F
(0)
ν̄e

(x) = 6x2(1 − x), J
(0)
ν̄e

(x) = 6x2(1 − x). (7)

3 QED corrections

The QED radiative corrections to the formula (5) were
calculated long ago in [10] through the integration over
the neutrino phase space of the O(α) corrected differential
muon decay rate. The QED corrections to (6) (see (7)),
are similarly obtained from the integration over the ν̄e–e−
(νµ–e−) phase space.

In the muon decay, the QED corrected differential rate
is given by

dΓ = dΓ0 + dΓV + dΓR, (8)

where dΓV describes the contribution of the virtual photon
diagrams in Fig. 1b–1d and dΓR accounts for the effects
of the real photon emission diagrams in Fig. 1e,f.

The virtual photon correction to the decay rate is given
by

dΓV =
1

2mµ
64 GF

2 |MV|2 dΦ3(pµ; pe, pν̄e , pνµ), (9)

where |MV|2 is the squared amplitude. For unpolarized
muons one has the expression

|MV|2 = |M0|2 − α

π

[
gS
L |M0|2 +

mµme

4
gS
R (pν̄epνµ) (10)

+ me gV
L (pµpν̄e)(pµpνµ) + mµ gV

R (pepν̄e)(pepνµ)
]

,

where gS,V
L,R are ultraviolet (UV) and are listed in Ap-

pendix A. The function gS
L is infrared (IR) divergent, while

the rest of the “g” functions are finite.
The IR singularity in gS

L is canceled with the soft pho-
ton terms of the real emission diagrams, which correct the
differential rate as follows:

dΓR =
1

2mµ
64 GF

2 |MR|2 dΦ4(pµ; pe, pν̄e
, pνµ

, k). (11)

The explicit expression of the amplitude |MR|2 can be
found in Appendix A.
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Fig. 1a–f. QED Radiative corrections to
muon decay. a Tree level diagram, b ver-
tex correction, c muon propagator correc-
tion, d electron propagator correction, e
muon leg bremsstrahlung, f electron leg
bremsstrahlung

QED corrections for polarized muons are calculated
identically to those of the unpolarized ones with the re-
placement pµ → pµ − smµ in the amplitudes, where s is
the muon four-spin [13].

3.1 Soft photon limit and IR cancellation

Before continuing with the discussion of the exact correc-
tions, let us consider their soft photon limit, i.e. k → 0, as
only IR singular terms of the virtual and real photon dia-
grams remain in this limit. When soft virtual and soft real
photon contributions are added, all O(α) IR singularities
are canceled.

In this limit, the O(k) terms in the virtual photon
diagrams are neglected and (10) is simplified to

|MSP
V |2 =

(
1 − α

π
gS
L

)
|M0|2, (12)

where gS
L contains all IR divergent terms which are regu-

larized introducing a finite photon mass λ.
In the diagrams containing real photon emission, only

terms of order O(k−2) remain in the soft photon limit.
They contain all IR divergent contributions from brems-
strahlung. The squared amplitude in (11) reduces to

|MSP
R |2 =

32
α

2π

[
p2

µ

(pµk)2
+

p2
e

(pek)2
− 2(pµpe)

(pµk)(pek)

]
|M0|2. (13)

The divergences in (12) cancel when added with the
soft bremsstrahlung part. However, (13) must be previ-
ously integrated over the photon-electron phase space in
order to reduce the real photon emission from a four-body
problem to a three-body problem. The integral is per-
formed introducing a finite photon mass λ, resulting in
a expression which exactly cancels the IR terms in (12).

After the integration over the corresponding phase
space, we obtain the soft photon corrected for both the νµ

and ν̄e distributions, which are proportional to the tree-
level amplitude, in the limits x → 1 and me → 0:

d2NSP
ν

dxd cos θ
= F (0)

ν (x)
[
1 − α

2π
k(x)

]
. (14)

The resulting function k(x) is λ-independent:

k(x) = 2 L(x) + 2π2/3 + ln2(1 − x). (15)

where L(x) is the Spence function defined in Appendix A.
The reader should realize that k(x) diverges for x → 1.

This singularity is due to a failure of the perturbative
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treatment: at the end point of the spectrum, the phase
space for the emission of real photons shrinks to zero and
does not compensate the IR infinities of the virtual pho-
tons.

The end-point singularity of the corrected electron dis-
tribution from muon decay has been largely discussed in
the literature [17]. For x → 1 and k → 0, the corrected
electron differential distribution diverges as ln(1−x). Since
the IR divergences in the muon decay stem from soft pho-
tons in the limit k → 0, the solution proposed to control
the end-point divergence is to consider multiple soft pho-
ton emission. The effect of considering soft photons at all
orders in α is the exponentiation of the singular logarithm
ln(1 − x) which leads to a non-singular distribution [18].

Following as a guideline the solution found for the elec-
tron, we apply the same procedure to the neutrino distri-
butions. Consider the neutrino soft photon correction in
(14). At the end point, for each soft virtual photon and
each soft real photon we get a ln2(1 − x) term, which
multiplies the tree-level amplitude. If there are n soft vir-
tual photons and n soft real photons, there are n double
logarithms with an additional symmetry factor of 1/n!.
Therefore, the correction to the neutrino distribution at
all orders in α is obtained summing over n:

d2Nν

dxd cos θ
=
[
F (0)

ν (x) + J (0)
ν Pµ(x) cos θ

]
×e− α

2π ln2(1−x). (16)

The evaluation of infrared divergences at all orders re-
sults in the exponentiation of the double logarithm, which
ensures a non-divergent behavior of the neutrino distribu-
tions. The exponentiation is only valid for a small region
x → 1. For lower x, we must include all the terms of the
exact corrections, computed in the next subsection.

3.2 Results

Exactly corrected neutrino distributions are obtained con-
sidering all terms of the O(α) corrected decay rate, (8),
and integrating over the phase space of the remaining par-
ticles. Different from the corrected electron distribution,
in the neutrino case, the integrals over the electron-photon
phase space in the real emission diagrams are non-trivial.
We follow the method found in [14] to analytically solve
these integrals in the calculation of the QCD corrections
to the lepton spectrum from the decay t → b + l+ + νl.
We use the fact that there is a one to one correspondence
between the Feynmann diagrams in Fig. 1 for the QED
corrections to the µ decay and those for the top quarks.
This correspondence can be seen by simply replacing

α → 4
3
αS,

(µ−, e−, ν̄e, νµ) → (t, b, l+, νl). (17)

Therefore, by following the techniques detailed [14],
we perform the corresponding phase-space integrals to the

differential rate of polarized muons. We find that the cor-
rected neutrino angular and energy distributions, includ-
ing all finite terms in the limit me = 0, are

d2Nνµ

dxd cos θ
= F (0)

νµ
(x) + J (0)

νµ
Pµ(x) cos θ

− α

2π

[
F (1)

νµ
(x) + J (1)

νµ
(x) Pµ cos θ

]
,

d2Nν̄e

dxd cos θ
= F

(0)
ν̄e

(x) + J
(0)
ν̄e

(x) Pµ cos θ (18)

− α

2π

[
F

(1)
ν̄e

(x) + J
(1)
ν̄e

(x) Pµ cos θ
]
,

where the F
(0)
ν̄e,νµ

–J
(0)
ν̄e,νµ

are given in (6), and the one-loop
corrections are given by

F (1)
νµ

(x) = F (0)
νµ

(x)k(x)

+
1
6
(41 − 36x + 42x2 − 16x3) ln(1 − x)

+
1
12

x(82 − 153x + 86x2) , (19)

J (1)
νµ

(x) = J (0)
νµ

(x)k(x)

+
1
6
(11 − 36x + 14x2 − 16x3 − 4/x) ln(1 − x)

+
1
12

(−8 + 18x − 103x2 + 78x3) , (20)

F
(1)
ν̄e

(x) = F
(0)
ν̄e

(x)k(x)

+ (1 − x)
[
(5 + 8x + 8x2) ln(1 − x)

+
1
2
x(10 − 19x)

]
, (21)

J
(1)
ν̄e

(x) = J
(0)
ν̄e

(x)k(x)

+ (1 − x)
[
(−3 + 12x + 8x2 + 4/x) ln(1 − x)

+
1
2
(8 − 2x − 15x2)

]
. (22)

As expected, due to the above correspondence, the re-
sults in (19)–(22) are identical to those for the QCD cor-
rections of the lepton distributions from the top decay.

Notice that the function k(x) appears in (19)–(22) mul-
tiplying the tree-level functions F

(0)
ν –J

(0)
ν , which agrees

with the discussion in the former subsection.
Figures 2 and 4 compare the corrected and the tree-

level forward νµ and νe distributions, respectively. In both
cases, the relative correction is of O(0.1%), well below the
order of the expected precision in the knowledge of the
beam parameters.

The correction found of O (α
π

) ∼ O(0.1%) agrees of
that expected from first order QED processes. This result
differs with the correction of O(1%) found for the electron
distribution [10]. The enhancement of the correction in the
e− case is due to the “leading logs”: terms proportional to
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Fig. 2. Zeroth order and O(α) corrected νµ forward distribu-
tions for Eµ = 30 GeV and Pµ=0.2

Fig. 3. Details of Fig. 2

ln
(

mµ

me

)
which stem from the emission of collinear photons

in the electron leg [19]. Since neutrinos are not sensitive to
QED, no term in α

π ln
(

mµ

mν

)
appears in the neutrino dis-

tributions and, neither, terms in α
π log

(
mµ

me

)
, which cancel

when the variables affected by QED corrections, i.e. the
electron and the photon-electron momenta, are integrated
over. An identical cancellation it is found in the O(α) cor-
rections to the muon lifetime computed with the result
that they are found to be of O (α

π

) ∼ O(0.1%) [10].
In the laboratory frame, neutrino fluxes are boosted

along the muon momentum direction. The formulae of
the corrected distributions in that frame are given in Ap-
pendix B.

4 Muon-beam divergence

We study below the systematic uncertainty in the neutrino
distributions produced by the muon beam divergence. For
the sake of illustration, the quantitative results will be
given for a 30 GeV unpolarized muon beam decaying in a

Fig. 4. Zeroth order and O(α) corrected ν̄e forward distribu-
tions. Parent muon parameters as in Fig. 2

Fig. 5. Details of Fig. 4

long straight section pointing to a far detector located at
2810 km.

The natural decay angle of the forward neutrino beam
in the laboratory frame is deduced from the relation be-
tween the rest and laboratory frames. In the rest frame,
half of the neutrinos are emitted within the cone θ ≤ π/2.
In the laboratory frame

cos θ
′
=

cos θ + β

1 + β cos θ
, (23)

where β =
√

1 − γ−2 is the muon velocity in the labora-
tory frame. Therefore, half of neutrinos are emitted within
the cone subtended by the decay angle θ

′ ≤ 1/γ. For in-
stance, for 30 GeV muons 1/γ = mµ/Eµ = 3 mrad.

For the beam and baseline illustrated here, a 10 kt de-
tector and one year of data taking [20], the statistical er-
ror on the neutrino flux is of the order of O(0.4%). It
is then convenient to restrain the uncertainty induced by
the muon beam divergence below that level. To achieve
this, the direction of the beam must be carefully moni-
tored within the decay straight section by placing beam
position monitors at its ends. The angular divergence of
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Fig. 6. Muon divergence in the laboratory frame

the parent muon beam is then small compared to the nat-
ural decay angle of the neutrino beam θ

′ ∼ 1/γ, see Fig. 6,
aiming at present to a divergence of O(0.1/γ). It implies
that the neutrino beam will be collinear, within the limits
set by the decay kinematics.

In our calculations we parameterize this beam focal-
ization by a gaussian distribution with standard devia-
tion σ ∼ 0.1/γ (i.e. 0.3 mrad for 30 GeV muon beam)
[21], which suppresses the flux of neutrinos as they sepa-
rate from the straight direction. The divergence is intro-
duced analytically by considering that the muon direction
opens an angle α with respect to the z-axis, defined as
the direction pointing towards the far detector at a dis-
tance L; see Fig. 6. The neutrino distributions in the rest
frame, (4), are Lorentz boosted along the z-axis. The rest-
frame basis (x, cos θ) is transformed to the lab-frame basis
(z, cos θ

′
), where z = Eν/Eµ and θ

′
is the angle between

the neutrino beam and the z-axis. Using the parameters
β =

√
1 − γ−2, the boosted distributions read

d2Nν̄µ,νµ

dzdΩ

=
4nµ

πL2m6
µ

E4
µz2
(
1 − β

(
sin ϕ

′
sin α sin θ

′
+ cos α cos θ

′))
×
{[

3m2
µ − 4zE2

µ

(
1 − β

(
sin ϕ

′
sin α sin θ

′
+ cos α cos θ

′))]
∓ Pµ

[
m2

µ − 4z
(
1 − β

(
sin ϕ

′
sin α sin θ

′
+ cos α cos θ

′))]}
,

d2Nνe,ν̄e

dzdΩ
(24)

=
24nµ

πL2m6
µ

E4
µz2
(
1 − β

(
sin ϕ

′
sin α sin θ

′
+ cos α cos θ

′))
×
{[

m2
µ − 2zE2

µ

(
1 − β

(
sin ϕ

′
sin α sin θ

′
+ cos α cos θ

′))]
∓ Pµ

[
m2

µ − 4z
(
1 − β

(
sin ϕ

′
sin α sin θ

′
+ cos α cos θ

′))]}
.

The above expressions are integrated on α, weighted
with the gaussian factor

e
−α2

2σ2

√
2πσ2

. (25)

For unpolarized muons (Pµ = 0) (for different muon
polarizations we obtain similar results), one finds the re-
sults

d2Nν̄µ,νµ

dzdΩ

=
4nµ

πL2m6
µ

E4
µz2

{
3m2

µ

(
1 − βe

−σ2
2 cos θ

′)

−4zE2
µ

(
1 − 2βe

−σ2
2 cos θ

′

+β2

(
1 − e−2σ2

2

)
sin2 θ

′
sin2 ϕ

′

+β2

(
1 + e−2σ2

2

)
cos2 θ

′
)}

,

d2Nνeν̄e

dzdΩ

=
24nµ

πL2m6
µ

E4
µz2

{
m2

µ

(
1 − βe

−σ2
2 cos θ

′)

−2zE2
µ

(
1 − 2βe

−σ2
2 cos θ

′

+β2

(
1 − e−2σ2

2

)
sin2 θ

′
sin2 ϕ

′

+β2

(
1 + e−2σ2

2

)
cos2 θ

′
)}

. (26)

Setting θ
′

= 0, the expression of the forward neutrino
fluxes reads

d2Nν̄µ,νµ

dzdΩ
=

4nµ

πL2m6
µ

E4
µz2

{
3m2

µ

(
1 − βe

−σ2
2

)

−4zE2
µ

(
1 − 2βe

−σ2
2 + β2

(
1 + e−2σ2

2

))}
,

d2Nνeν̄e

dzdΩ
=

24nµ

πL2m6
µ

E4
µz2

{
m2

µ

(
1 − βe

−σ2
2

)
(27)

−2zE2
µ

(
1 − 2βe

−σ2
2 + β2

(
1 + e−2σ2

2

))}
.

Figures 7 and 8 show the numerical results for the
neutrino and antineutrino spectra in a medium baseline
(2810 km). We compare the distribution where the muon
beam is aligned with the detector direction (no beam di-
vergence) with the distribution where the muon beam di-
vergence is included. In the former, neutrino beams are
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Fig. 7. νµ and ν̄µ differential distributions. The solid lines
represent the spectra obtained by averaging over an angular
divergence of 0.1 mrad and the dashed lines the spectra includ-
ing the muon beam divergence. The distributions are plotted
in the forward direction, cos θ = 0, pointing towards a detec-
tor located 2810 km from the neutrino source of unpolarized
positive or negative muons circulating in the storage ring with
energies of 30 GeV

averaged over an angle θ
′

of 0.1 mrad at the far detector
[15].

Our formulae predict a similar flux correction than pre-
vious numerical estimations [21]. For instance, a 10% un-
certainty in the muon beam divergence would lead to a
flux uncertainty of 0.3%. We obtain

∆dNν

dE
dNν

dE

∼ 0.03
∆α

α
. (28)

If the muon beam divergence is constrained by lattice de-
sign to be less than 0.05/γ, the loss of flux will be negli-
gible [22].

5 Conclusions

A neutrino factory from muon decay aims at a precision
better than O(1%) in the knowledge of the resulting in-
tense neutrino fluxes.

We have presented here novel results on the effects
of QED corrections and the muon beam divergence on
the neutrino differential distributions from muon decay.
We have given the corresponding corrected formulae (for
me = 0 and mν = 0), including muon polarization effects.
The induced uncertainties on the neutrino spectra turn
out to be safely of order O(0.1%).

Neutrino one-loop corrected distributions diverge at
the upper edge of the kinematical allowed region. This
results from a failure in the cancellation of infrared di-
vergences from virtual photons by real photons. Applying
the soft photon limit to the exact calculations, we have

Fig. 8. νe and ν̄e differential distributions. The solid lines rep-
resent the spectra obtained by averaging over an angular di-
vergence of 0.1 mrad and the dashed lines the spectra including
the muon beam divergence. The distributions are plotted with
the same parameters as in Fig. 7

isolated the end-point divergent term for the neutrino dis-
tributions which takes the form of ln2(1 − x). In order
to control this singularity, the double logarithmic contri-
bution is exponentiated, encompassing the contributions
from all orders of perturbation theory. All in all, the exact
neutrino distributions get corrections of O(0.1)%, safely
below the expected precision in the flux measurements.

We have also studied carefully the influence of the
muon beam divergence on the neutrino spectra at the
far site. The challenge in designing the neutrino produc-
tion section, where the muons decay, is to constrain the
muon beam divergence to a value smaller than the natural
cone of forward going neutrinos in the laboratory frame,
(∼ 1/γ). At present, the long straight sections under dis-
cussion aim at an angular muon beam divergence of the
order of 0.1/γ, typically less than one mrad.
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Appendix

A QED loop corrections

A.1 Virtual corrections

There are three diagrams containing a photon loop: the
exchange of the virtual photon between the muon and
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the electron legs, Fig. 1b, and lepton propagator correc-
tions, Fig. 1c,d. They correct the invariant amplitude of
the muon decay as follows:

−i M =
GF√

2
{ū(pe)Γσu(pµ)}

×{ū(pνµ
)γσ(1 − γ5)v(pν̄e

)
}

. (29)

Γσ is the corrected µ–e vertex:

Γσ = γσ(1 − γ5) + Γ b
σ + Γ c,d

σ , (30)

where Γ b
σ results from the diagram in Fig. 1b and Γ c,d

σ

from those in Fig. 1c,d.
After integration over the photon momentum, the cor-

rection from diagram 1b has the expression

Γ b
σ = − α

2π
[(gb

IR + gb
UV) γσ (1 − γ5) + gS

R γσ (1 + γ5)

+ gV
L p1σ (1 − γ5) + gV

R p2σ (1 + γ5) ], (31)

with

gb
IR = coth φ

[
L

(
2 sinhφ

eω − e−φ

)
− L

(
2 sinhφ

eφ − e−ω

)

+ (ω − φ) ln


2 sinh

(
ω−φ

2

)
2 sinh

(
φ+ω

2

)



+ φ

(
ω − ln

(
λ2

m2
e

))]
,

gb
UV =

φ sinhφ − ω sinhω

2(cosh ω − cosh φ)
+

1
2

(
ω − ln

(
Λ2

m2
e

))
− 3

2
,

gS
R =

−φ

sinhφ
,

gV
L =

1
2mµ sinhφ

[
φ − ω sinhφ − φ sinhω

cosh ω − cosh φ

]
,

gV
R =

1
2me sinhφ

[
φ +

ω sinhφ − φ sinhω

cosh ω − cosh φ

]
, (32)

where the IR term is regularized by a finite photon mass
λ and the variables

cosh φ =
(pµpe)
mµme

, eω =
mµ

me
(33)

are introduced following [10].
L(x) is the Spence function

L(x) ≡ −
∫ x

0
dt

ln |1 − t|
t

. (34)

The contribution of self-energy diagrams to the muon–
electron vertex, after integration over the photon momen-
tum, is given by

Γ c,d
σ = − α

2π

1
2

(hc,d
UV + hc,d

IR ), (35)

where, now,

hc,d
UV = −1

2

(
ω − ln

(
Λ2

m2
e

))
+

3
2
, (36)

hc,d
IR =

(
ω − ln

(
λ2

m2
e

))
+ 2. (37)

Adding (32) and (36) the UV divergences are exactly
cancelled. The IR terms in (37), when combined with (31),
give rise to the term

gS
L = − coth φ


φ − L

(
2 sinhφ

eω − e−φ

)
+ L

(
2 sinhφ

eφ − e−ω

)

− (ω − φ) ln


2 sinh

(
ω−φ

2

)
2 sinh

(
φ+ω

2

)





+
φ sinhφ − ω sinhω

2(cosh ω − cosh φ)
+ 2

−(1 − φ coth φ)
(

ω − ln
(

λ2

m2
e

))
. (38)

A.2 Bremsstrahlung corrections

The contribution from real photon emission, Fig. 1e,f, is
given by

dΓR =
1

2mµ
64 GF

2 |MR|2 dΦ4(pµ; pe, pν̄e
, pνµ

, k), (39)

where the amplitude |MR|2 has the following expression:

|MR|2 =
α

2π

[
A

(pµk)2
+

B

(pek)2
− C

(pµk)(pek)

]
. (40)

The numerators for unpolarized muons read

A = p2
µ

[
(pµpν̄e)(pepνµ) − (kpν̄e)(pepνµ)

−(pµk)(kpν̄e)(pepνµ)
]
,

B = p2
e

[
(pµpν̄e)(pepνµ) + (pµpν̄e)(kpνµ),

−(pµpν̄e)(pek)(kpνµ)
]
,

C = (pµpe)
[
2(pµpν̄e)(pepνµ) + (pµpν̄e)(kpνµ)

−(kpν̄e
)(pepνµ

)
]

+(pek)
[
(pµpν̄e)(pepνµ) + (pµpν̄e)(pµpνµ)

−(pµpν̄e)(kpνµ)
]

−(pµk)
[
(pµpν̄e)(pepνµ) + (pepν̄e)(pepνµ)

−(kpν̄e)(pepνµ)
]
. (41)

Terms of order k2 are not included in (41), since they
vanish in the limit of massless photons.
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B QED corrected distributions
in the laboratory frame

In order to obtain the neutrino distributions in the labora-
tory frame, a Lorentz boost is performed in the direction
of the muon velocity towards the detector at a distance
L. The rest-frame basis (x, cos θ) is transformed to the
lab-frame basis (z, cos θ

′
), where z = Eν/Eµ is the scaled

energy at the laboratory frame and θ
′

is the angle be-
tween the neutrino beam and the direction of the muon
beam [15]. The muon beam divergence is set to zero. Us-
ing the parameters γ = Eµ/mµ and β =

√
1 − γ−2, the

boosted distributions read

d2Nνµ

dzd cos θ′ = F (0)
νµ

(z, θ
′
) + Pµ J (0)

νµ
(z, θ

′
) cos θ

′

− α

2π

[
F (1)

νµ
(z, θ

′
) + Pµ J (1)

νµ
(z, θ

′
) cos θ

′]
, (42)

d2Nν̄e

dzd cos θ′ = F
(0)
ν̄e

(z, θ
′
) + Pµ J

(0)
ν̄e

(z, θ
′
) cos θ

′

− α

2π

[
F

(1)
ν̄e

(z, θ
′
) + Pµ J

(1)
ν̄e

(z, θ
′
) cos θ

′]
, (43)

where

F (0)
νµ

(z, θ
′
) = 8

E4
µ

m6
µ

z2 (1 − β cos θ
′
)

× (3m2
µ − 4E2

µz(1 − β cos θ
′
)), (44)

J (0)
νµ

(z, θ
′
) = 8

E4
µ

m6
µ

z2 (1 − β cos θ
′
)

× (m2
µ − 4E2

µz(1 − β cos θ
′
)), (45)

F
(0)
ν̄e

(z, θ
′
) = 48

E4
µ

m6
µ

z2 (1 − β cos θ
′
)

× (m2
µ − 2E2

µz(1 − β cos θ
′
)), (46)

J
(0)
ν̄e

(z, θ
′
) = 48

E4
µ

m6
µ

z2 (1 − β cos θ
′
)

× (m2
µ − 2E2

µz(1 − β cos θ
′
)), (47)

F (1)
νµ

(z, θ
′
) = F (0)

νµ
(z, θ

′
)k(z, θ

′
)

+
1

3(1 − β cos θ′)

{[
41 − 36

(
2γ2z (1 − β cos θ

′
)
)

+ 42
(
2γ2z (1 − β cos θ

′
)
)2

− 16
(
2γ2z (1 − β cos θ

′
)
)3]

× ln
(
1 − 2γ2z (1 − β cos θ

′
)
)

+
1
2

(
2γ2z (1 − β cos θ

′
)
)

×
[
82 − 153

(
2γ2z (1 − β cos θ

′
)
)

+ 86
(
2γ2z (1 − β cos θ

′
)
)2]}

, (48)

J (1)
νµ

(z, θ
′
) = J (0)

νµ
(z, θ

′
)k(z, θ

′
)

+
1

3(1 − β cos θ′)

{[
11 − 36

(
2γ2z (1 − β cos θ

′
)
)

+ 14
(
2γ2z (1 − β cos θ

′
)
)2

− 16
(
2γ2z (1 − β cos θ

′
)
)3

+ 4
(
2γ2z (1 − β cos θ

′
)
)−1]

× ln
(
1 − 2γ2z (1 − β cos θ

′
)
)

+
1
2

[
− 8 + 18

(
2γ2z (1 − β cos θ

′
)
)

− 103
(
2γ2z (1 − β cos θ

′
)
)2

+ 78
(
2γ2z (1 − β cos θ

′
)
)3]}

, (49)

F
(1)
ν̄e

(z, θ
′
) = F (0)

νe
(z, θ

′
)k(z, θ

′
)

+
2
(
1 − 2γ2z (1 − β cos θ

′
)
)

(1 − β cos θ′)

×
{[

5 + 8
(
2γ2z (1 − β cos θ

′
)
)

+ 8
(
2γ2z (1 − β cos θ

′
)
)2]

× ln
(
1 − 2γ2z (1 − β cos θ

′
)
)

+
1
2

(
2γ2z (1 − β cos θ

′
)
)

×
[
10 − 19

(
2γ2z (1 − β cos θ

′
)
)]}

, (50)

J
(1)
ν̄e

(z, θ
′
) = J (0)

νe
(z, θ

′
)k(z, θ

′
)

+
2
(
1 − 2γ2z (1 − β cos θ

′
)
)

(1 − β cos θ′)

×
{[

− 3 + 12
(
2γ2z (1 − β cos θ

′
)
)

+ 8
(
2γ2z (1 − β cos θ

′
)
)2

+ 4
(
2γ2z (1 − β cos θ

′
)
)−1]

× ln
(
1 − 2γ2z (1 − β cos θ

′
)
)

+
1
2

[
8 − 2

(
2γ2z (1 − β cos θ

′
)
)

− 15
(
2γ2z (1 − β cos θ

′
)
)2]}

, (51)

k(z, θ
′
) = ln2

(
1 − 2γ2z (1 − β cos θ

′
)
)

+ 2L
(
2γ2z (1 − β cos θ

′
)
)

+
2π2

3
. (52)
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